50 research outputs found

    Integrated assessment of marine biodiversity status using a prototype indicator-based assessment tool

    Get PDF
    Integrated assessment of the status of marine biodiversity is and has been problematic compared to, for example, assessments of eutrophication and contamination status, mostly as a consequence of the fact that monitoring of marine habitats, communities and species is expensive, often collected at an incorrect spatial scale and/or poorly integrated with existing marine environmental monitoring efforts. The objective of this Method Paper is to introduce and describe a simple tool for integrated assessment of biodiversity status based on the HELCOM Biodiversity Assessment Tool (BEAT), where interim biodiversity indicators are grouped by themes: broad-scale habitats, communities, and species as well as supporting non-biodiversity indicators. Further, we report the application of an initial indicator-based assessment of biodiversity status of Danish marine waters where we have tentatively classified the biodiversity status of Danish marine waters. The biodiversity status was in no areas classified as “unaffected by human activities.” In all the 22 assessment areas, the status was classified as either “moderately affected by human activities” or “significantly affected by human activities.” Spatial variations in the biodiversity status were in general related to the eutrophication status as well as fishing pressure

    Crude fucoidan content in two North Atlantic kelp species, Saccharina latissima and Laminaria digitata - seasonal variation and impact of environmental factors

    Get PDF
    Fucoidans are sulphated fucose-rich polysaccharides predominantly found in the cell walls of brown algae. The bioactive properties of fucoidans attract increasing interest from the medico-pharmaceutical industries and may drive an increase in demand of brown algae biomass. In nature, the biochemical composition of brown algae displays a seasonal fluctuation driven by environmental factors and endogenous rhythms. To cultivate and harvest kelps with high yields of fucoidans, knowledge is needed on seasonal variation and impact of environmental conditions on the fucoidan content of brown algae. The relations between the fucoidan content and key environmental factors (irradiance, nutrient availability, salinity and exposure) were examined by sampling natural populations of the common North Atlantic kelps, Saccharina latissima and Laminaria digitata, over a full year at Hanstholm in the North Sea and Aarhus in the Kattegat. In addition, laboratory experiments were carried out isolating the effects of the single factors. The results demonstrated that (1) seasonal variation alters the fucoidan content by a factor of 2–2.6; (2) interspecific differences exist in the concentrations of crude fucoidan (% of dry matter): L. digitata (11%) > S. latissima (6%); and (3) the effects of single environmental factors were not consistent between species or between different conspecific populations. The ambiguous response to single environmental factors complicates prospective directions for manipulating an increased content of fucoidan in a cultivation scenario and emphasizes the need for knowledge on performance of local kelp ecotypes.This study was carried out as part of the MacroAlgae Biorefinery (MAB3), the MacroAlgae Biorefinery 4 (MAB4) and the Macrofuels projects, funded by The Danish Council for Strategic Research, the Innovation Fund Denmark and the European Union's Horizon 2020 research and innovation programme under grant agreement no. 654010, respectively

    Habitat Model of Eelgrass in Danish Coastal Waters: Development, Validation and Management Perspectives

    Get PDF
    During the last century, eutrophication significantly reduced the depth distribution and density of the habitat forming eelgrass meadows (Zostera marina) in Danish coastal waters. Despite large reductions in nutrient loadings and improved water quality, Danish eelgrass meadows are currently not as widely distributed as expected from improvements in water clarity alone. This point to the importance of other environmental conditions such as sediment quality, wave exposure, oxygen conditions and water temperature that may limit eelgrass growth and contribute to constraining current distributions. Recently, detailed local models have been set up to evaluate the importance of such regulating factors in selected Danish coastal areas, but nationwide maps of eelgrass distribution and large-scale evaluations of regulating factors are still lacking. To provide such nationwide information, we applied a spatial habitat GIS modeling approach, which combines information on six key eelgrass habitat requirements (light availability, water temperature, salinity, frequency of low oxygen concentration, wave exposure, and sediment type) for which we were able to obtain national coverage. The modeled potential current distribution area of Danish eelgrass meadows was 2204 km2 compared to historical estimates of around 7000 km2, indicating a great potential for further distribution. While validating the modeled eelgrass distribution area in three areas (83–111 km2) that hold large eelgrass meadows, we found an agreement of 67% with in situ monitoring data and 77% for eelgrass areas as identified from summer orthophotos. The GIS model predicted higher coverage especially in shallow waters and near the depth limits. Areas of disagreement between GIS-modeled and observed coverage generally exhibited higher exposure level, mean summer temperature and salinity compared to areas of agreement. A sensitivity analysis showed that the modeled area distribution of eelgrass was highly sensitive to light conditions, with 18–38% increase in coverage following an increase in light availability of 20%. Modeled coverage of eelgrass was also sensitive to wave exposure and temperature conditions while less sensitive to changes in oxygen and salinity conditions. Large regional differences in habitat conditions suggest spatial variation in the factors currently limiting the recovery of eelgrass and, hence, variations in actions required for sustainable management
    corecore